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Abstract
A generalized Lorentz transformation that preserves the invariance of a
nonlinear Klein–Gordon equation is presented and is used to extend the set
of solitary-wave solutions for a special set of N coupled nonlinear Schrödinger
equations to become solutions of the corresponding set of coupled nonlinear
Klein–Gordon equations.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

Solitary-wave solutions for a one-component nonlinear Klein–Gordon (NKG) and two-
component coupled nonlinear Klein–Gordon (CNKG) equations that are an extension of
the corresponding nonlinear Schrödinger (NLS) and coupled nonlinear Schrödinger (CNLS)
equations were recently given by the author [1]. The NLS and CNLS equations have been
studied extensively for many years (see [2–5] and many references therein) because of their
useful applications for long-distance propagation in optical communication systems. If,
however, the wavefunctions that represent the envelopes of the waves are not as slowly varying
functions of the position as are usually assumed, the corresponding nonlinear Klein–Gordon
type equations instead of the nonlinear Schrödinger equations would be the equations that
govern their evolution.

In an attempt by the author to extend the applicability of the large number of periodic
solitary-wave solutions [6] that are available for a special set of the CNLS equations to the
corresponding set of the CNKG equations, two forms of a generalized Lorentz transformation
were discovered and they are presented in section 2. The extension of our previous results
[1, 6] on solitary waves for a special set of CNLS equations to the corresponding sets of N
CNKG equations is presented in section 3. The two corresponding sets will be called the
L-sets as they are a direct extension of the L-set for N CNLS equations we studied earlier [6]
for which we found solitary waves that can be represented by Lamé functions [7] of orders
n � N . As it will be seen, the two forms of solutions given by the two forms of our generalized
Lorentz transformation can cover the same regime of parameter values, in which they would
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give equivalently the same solutions, or they can be two separate solutions for two different
regimes of parameter values. A brief summary is given in section 4.

2. Generalized Lorentz transformation

Consider the following one-component nonlinear general Klein–Gordon equation for the
complex amplitude or wavefunction φ(z, t) as a function of position z and time t:

iα′φz + α′′φzz + iβ ′φt + β ′′φtt + κφ + F(|φ|2)φ = 0 (1)

where α′, α′′, β ′ and β ′′ are real parameters, κ can be real or complex in this section but is
assumed real in the following section, F(|φ|2) is an arbitrary function of |φ|2, and where the
subscripts in z and t denote derivatives with respect to z and t.

For the case α′′ �= 0 and β ′′ �= 0, the first derivative terms with respect to z and t can be
eliminated with the substitution

φ(z, t) = ψ(z, t) exp{−i(α′z/α′′ + β ′t/β ′′)/2}
which transforms equation (1) into the following ‘standard form’ of nonlinear Klein–Gordon
equation for ψ :

α′′ψzz + β ′′ψtt + µψ + F(|ψ |2)ψ = 0 (2)

with µ = κ + α′2/(4α′′) + β ′2/(4β ′′).
However, in order to include the special cases of two forms of nonlinear Schrödinger

equations given by (i) α′′ = 0, β ′′ �= 0, α′ �= 0, and (ii) β ′′ = 0, α′′ �= 0, β ′ �= 0, the general
nonlinear Klein–Gordon equation (1) is used as the starting point. While for the standard
Klein–Gordon equation, the ratio α′′/β ′′ = −c2 is fixed, where c is the speed of light, for
the example of pulse propagation in an optical fibre, the parameters α′, β ′, α′′ and β ′′ in
equation (1) depend on the characteristics of the medium, and the ratio α′′/β ′′ depends on the
group velocity of the wave and its dispersion and can have a positive or negative value.

These considerations led to the formulation of a generalized Lorentz transformation which
we present in the following.

Consider changing the position coordinate and time from z and t to z′ and t ′ according to
the following transformation:

z′ = a11z + a12t t ′ = a21z + a22t (3)

and

z = a11z
′ − a12t

′ t = −a21z
′ + a22t

′ (4)

where a are constants to be determined. Consider a function φ′(z′, t ′) = φ(z, t) exp[−iθ(z′,
t ′)] or

φ(z, t) = φ′(z′, t ′) exp[iθ(z′, t ′)]. (5)

Substituting equation (4) into equation (1), and using ∂/∂z = a11∂/∂z′ + a21∂/∂t ′, and
∂/∂t = a12∂/∂z′ + a22∂/∂t ′ equation (1) becomes

iα′φz + α′′φzz + iβ ′φt + β ′′φtt + κφ + F(|φ|2)φ = exp[iθ(z′, t ′)]
× {

iφ′
z′
[
2
(
a2

11α
′′ + a2

12β
′′)θz′ + 2(a11a21α

′′ + a12a22β
′′)θt ′ + (a11α

′ + a12β
′)
]

+ iφ′
t ′
[
2
(
a2

21α
′′ + a2

22β
′′)θt ′ + 2(a11a21α

′′ + a12a22β
′′)θz′ + (a21α

′ + a22β
′)
]

+
(
a2

11α
′′ + a2

12β
′′)φ′

z′z′ +
(
a2

21α
′′ + a2

22β
′′)φ′

t ′t ′ + 2(a11a21α
′′ + a12a22β

′′)φ′
z′t ′
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− [(
a2

11α
′′ + a2

12β
′′)θ2

z′ +
(
a2

21α
′′ + a2

22β
′′)θ2

t ′ + 2(a11a21α
′′ + a12a22β

′′)θz′θt ′

+
(
a2

11α
′′ + a2

12β
′′)θz′z′ +

(
a2

21α
′′ + a2

22β
′′)θt ′t ′ + 2(a11a21α

′′ + a12a22β
′′)θz′t ′

+ (a11α
′ + a12β

′)θz′ + (a21α
′ + a22β

′)θt ′
]
φ′ + κφ′ + F(|φ′|2)φ′}

= exp[iθ(z′, t ′)]{iα′φ′
z′ + α′′φ′

z′z′ + iβ ′φ′
t ′ + β ′′φ′

t ′t ′ + κφ′ + F(|φ′|2)φ′} = 0

i.e. equation (1) would be invariant with respect to the coordinate and time transformation
given by equations (3) and (4), provided that the following relations:

a11 = ±a22 a11a22 − a12a21 = ±1 α′′a21 ± β ′′a12 = 0 (6)

are satisfied, and with A and B in θ(z′, t ′) = Az′ + Bt ′ satisfying the following relations:

for α′′ �= 0

A = 1

2α′′ [(1 − a11)α
′ − a12β

′] (7)

for β ′′ �= 0

B = 1

2β ′′ [−a21α
′ + (1 − a22)β

′] (8)

and generally

α′′A2 + β ′′B2 + (a11α
′ + a12β

′)A + (a21α
′ + a22β

′)B = 0. (9)

Relation (9) allows A (or B) to be determined for the case α′′ (or β ′′) equal to zero. The
coordinate and time transformations given by equations (3) and (4), with a given by equation
(6), will be called the generalized Lorentz transformation.

The following result follows: any solution φ(z, t) of equation (1) can be replaced by

φ(a11z − a12t,−a21z + a22t) exp[−iθ(z, t)] (10)

where

θ(z, t) = Az + Bt (11)

A and B are given by equations (7) and (8), and where a satisfy equation (6). The invariance
will be called the generalized Lorentz invariance.

From here on, we shall consider and apply only the proper Lorentz transformation
(equations (3) and (4)) and invariance (equations (10) and (11)) for which the a satisfy
equation (6) given by the upper signs and where a11 = a22 = a positive quantity. We
shall drop the description ‘proper’ for brevity. As can be seen, the generalized Lorentz
transformation depends on the ratio α′′/β ′′ or β ′′/α′′. Define

r ≡ α′′/β ′′ (12)

and introduce a velocity parameter v.
We now present two forms of this transformation:

(I) For r > −v2. Setting a11 = a22 = η ≡ (1 + rv−2)−1/2, a12 = −ηrv−1, a21 = η/v, we
have the following generalized Lorentz transformation:

z′ = η(z − rv−1t) t ′ = η(t + z/v) (13)

or

z = η(z′ + rv−1t ′) t = η(t ′ − z′/v).
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The generalized Lorentz invariance states that any solution φ(z, t) of equation (1) can be
replaced by

φ[η(z + rv−1t), η(t − z/v)] exp −i

{
1

2α′′ [(1 − η)α′ + ηrv−1β ′]z

+
1

2β ′′ [−ηv−1α′ + (1 − η)β ′]t
}

.

(II) For r−1 � 0, or for r < −v2. Setting a11 = a22 = σ ≡ (1 + r−1v2)−1/2, a12 = σv, a21 =
−σr−1v, we have the following generalized Lorentz transformation:

z′ = σ(z + vt) t ′ = σ(t − r−1vz) (14)

or

z = σ(z′ − vt ′) t = σ(t ′ + r−1vz′).

The generalized Lorentz invariance states that any solution φ(z, t) of equation (1) can be
replaced by

φ[σ(z − vt), σ (t + r−1vz)] exp −i

{
1

2α′′ [(1 − σ)α′ − σvβ ′]z

+
1

2β ′′ [σr−1vα′ + (1 − σ)β ′]t
}

.

Note that the two forms of generalized Lorentz transformation have an overlapping region
of applicability given by r � 0 in which they should give the same result for the same value of
r. However, for negative values of r, the two forms are applied to two separate regions given
by r > −v2 and r < −v2, respectively.

The familiar Lorentz transformation for special relativity corresponds to the special value
of r = −c2 < −v2 for which the second form of our generalized Lorentz transformation
applies, giving

σ = (1 − v2/c2)−1/2 (15)

and

z′ = σ(z + vt) t ′ = σ(t + vz/c2) (16)

or

z = σ(z′ − vt ′) t = σ(t ′ − vz′/c2).

It is somewhat unexpected that the first form of the generalized Lorentz transformation can
be used, with the choice of r = −(v2/c2)v2 > −v2, to give a second and new ‘Lorentz’
transformation that would have the same ‘relativistic’ factor η = σ = (1 − v2/c2)−1/2, for
which the transformation becomes

z′ = η(z + v3t/c2) t ′ = η(t + z/v) (17)

or

z = η(z′ − v3t ′/c2) t = η(t ′ − z′/v).

Transformations given by equations (13) and (14) become, for special cases of r = 0
and r−1 = 0, two forms of Galilean transformation that are applicable for two forms of NLS
equations, as shown in the following.

(i) For r = 0 or α′′ = 0 and α′ �= 0. Setting a11 = a22 = 1, a12 = 0, a21 = 1/v, the following
Galilean transformation results:

z′ = z t ′ = t + z/v (18)
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or

z = z′ t = t ′ − z′/v.

The Galilean invariance states that any solution φ(z, t) of

iα′φz + iβ ′φt + β ′′φtt + κφ + F(|φ|2)φ = 0

can be replaced by

φ(z, t − z/v) exp

{
i

α′

2β ′′v

[
t −

(
1

2v
+

β ′

α′

)
z

]}

where B and A for θ have been obtained from equations (8) and (9). This form of Galilean
invariance was used often in problems in nonlinear optics (see e.g. [2–5]).

(ii) For r−1 = 0 or β ′′ = 0 and β ′ �= 0. Setting a11 = a22 = 1, a12 = v, a21 = 0, the following
Galilean transformation results:

z′ = z + vt t ′ = t (19)

or

z = z′ − vt ′ t = t ′.

The Galilean invariance states that any solution φ(z, t) of

iα′φz + α′′φzz + iβ ′φt + κφ + F(|φ|2)φ = 0

can be replaced by

φ(z − vt, t) exp

{
i
β ′v
2α′′

[
z −

(
v

2
+

α′

β ′

)
t

]}

where A and B for θ have been obtained from equations (7) and (9).
The fact that the two forms of the generalized Lorentz transformation (I) and (II) or

equations (13) and (14) are independently useful can be further seen as they are applied to
obtain the solitary-wave solutions for a special set of N CNKG equations.

For the set of N general CNKG equations given by

iα′
mφmz + α′′

mφmzz + iβ ′
mφmt + β ′′

mφmtt + κmφm + Fm

(|φ1|2 , . . . , |φN |2) φm = 0 (20)

where the subscript m (= 1, . . . , N) denotes the mth component wave, application of our
generalized Lorentz transformation requires, for the case α′′

m �= 0, β ′′
m �= 0, that α′′

m/β ′′
m = r be

independent of m, for m = 1, . . . , N. A special set of these N CNKG equations is studied in
the following section.

3. Special case of N CNKG equations: the L-set

For many applications, the general CNKG equations represented by equation (20) are of the
form

iα′
mφmz + α′′

mφmzz + iβ ′
mφmt + β ′′

mφmtt + κmφm +


 N∑

j=1

λmj

∣∣φj

∣∣2


 φm = 0 (21)

where m = 1, . . . , N . For problems of wave propagation in optical fibres in which φm(z, t)

represents the amplitude of the mth electric field component, λmj represents the nonlinear
parameter that depends on the nonlinear index coefficient, the effective core area and the
carrier frequency ωm of the mth wave [4]. If k0m = ωm/c denotes the wave number at the
carrier frequency, k1m = (dk/dω)ω=ωm

denotes 1/vm, vm being the group velocity of the mth
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wave, and k2m = (d2k/dω2)ω=ωm
denotes the group-velocity dispersion (GVD) of the mth

wave, then the coefficients of the spatial and time derivatives of φm in equation (21) can be
identified as follows: α′

m = 1, α′′
m = (2k0m)−1, β ′

m = k1m, β ′′
m = −k2m/2. In most published

work that describe the wave propagation in optical fibres, it is usually assumed that the electric
field envelope is slowly varying and satisfies the inequality

∣∣k−1
0m∂φm/∂z

∣∣ � |φm| that allows
dropping the α′′

mφmzz term from equation (21), and that in turn reduces equation (21) to a
CNLS equation. However, the inclusion of the α′′

mφmzz term and consideration of the CNKG
rather than CNLS equation not only gives the necessary and important correction to the many
solutions of the CNLS equation, but also gives the correct solutions to those cases that involve
periodic electric field envelopes with zeroes or those that cross the spatial coordinates at
various points, as those presented in [1] and below, for which the inequality is clearly invalid
at and near those coordinate points.

In [1], we presented solitary-wave solutions of equation (21) for N = 1 and 2 that
are applicable for a rather general set of nonlinear interaction parameters λ. The additional
solutions for the special set of CNKG equations which we shall present in this section that
may have applications in different fields of physics will illustrate the power and usefulness of
the generalized Lorentz transformation presented in the previous section.

In analogy with the L-set defined for the special set of N CNLS equations, we define two
types of L-set for the N CNKG equations (21). They are given, respectively, by the following
(normalized) coupled equations:

(I) iα′
mφmz + α′′

mφmzz + iβ ′
mφmt ± β ′′

mφmtt + κmφm ±

 N∑

j=1

β ′′
mβ ′′

j |φj |2

 φm = 0 (22)

m = 1, . . . , N , where β ′′
m = +1 or −1 for m = 1, . . . , N , and α′′

1/β ′′
1 = . . . = α′′

N/β ′′
N ≡ r;

and

(II) iα′
mφmz ± α′′

mφmzz + iβ ′
mφmt + β ′′

mφmtt + κmφm ±

 N∑

j=1

α′′
mα′′

j |φj |2

 φm = 0 (23)

m = 1, . . . , N , where α′′
m = +1 or −1 for m = 1, . . . , N, and α′′

1/β ′′
1 = . . . = α′′

N/β ′′
N ≡ r.

The special case of equation (22) for N CNLS equations characterized by α′′
m = β ′

m = 0
is the L-set for N CNLS equations for which solitary waves in terms of Lamé functions of
order n � N were presented in [1, 6]. As in those works, the standing-wave solutions are first
attempted. We then ‘boost’ these standing-wave solutions to travelling-wave solutions using
two forms of generalized Lorentz transformation given in section 2.

For (I), the substitution

φm(z, t) = ψm(t) exp[−iβ ′
mt/(2β ′′

m)] exp(iωmz) (24)

is made in equation (22), where ωm are real constants and ψm(t) are real functions of t only.
Then the coupled equations for ψm(t) become

ψmtt + cmψm +


 N∑

j=1

β ′′
j ψ2

j


 ψm = 0 m = 1, . . . , N (25)

where

cm = ±β ′′
m

[
κm − α′

mωm − α′′
mω2

m + β ′2
m

/
(4β ′′

m)
]
. (26)

To eliminate the permutation symmetry, equation (25) is arranged such that

c1 � c2 � · · · � cN (27)
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so that only one of the two choices (the upper or lower sign) in equations (22) and (26)
corresponds to the equations of motion for equation (25). Equation (22) is considered with
the upper signs since the lower signs give no new physics, and the interaction parameters
of equation (22) are characterized by the array (β ′′

1 , β ′′
2 , . . . , β ′′

N), where β ′′
j = +1 or −1 (or

denoted simply by + or − in [1, 6]), and each of the 2N arrays is referred to as an interaction
type. Tables 3, 4 and appendix D of [1] gave a whole set of analytic solutions for ψm(t)

in terms of Lamé functions of orders n � N that are applicable here. The travelling waves
are now constructed using the generalized Lorentz invariance (I) which gives the following
solitary waves:

ψm[η(t − z/v)] exp(i�m) (28)

as a solution of equation (22), where

η ≡ (1 + rv−2)−1/2 (29)

�m =
[
η

(
ωm +

α′
m

2α′′
m

)
− α′

m

2α′′
m

]
z +

[
η

v

(
rωm +

α′
m

2β ′′
m

)
− β ′

m

2β ′′
m

]
t (30)

and where v is the common velocity of the waves.
For α′′

m = 0 (i.e. r = 0), equations (8) and (9) are used to obtain B and A, giving

�m =
(

ωm − α′
m

4β ′′
mv2

)
z +

1

2β ′′
m

(
α′

m

v
− β ′

m

)
t. (31)

For (II), the substitution

φm(z, t) = ψm(z) exp[−iα′
mz/(2α′′

m)] exp(imt) (32)

is made in equation (23), where m are real constants and ψm(z) are real functions of z only.
Then the coupled equations for ψm(z) are

ψmzz + cmψm +


 N∑

j=1

α′′
j ψ

2
j


 ψm = 0 m = 1, . . . , N (33)

where

cm = ±α′′
m[κm − β ′

mm − β ′′
m 2

m + α′2
m/(4α′′

m)]. (34)

To eliminate the permutation symmetry, cj are arranged as in equation (27), and
equation (23) with the upper signs only is considered. The interaction parameters of
equation (23) are characterized by the array (α′′

1 , α′′
2 , . . . , α′′

N), where α′′
j = +1 or −1, and

each of the 2N arrays is referred to as an interaction type. The set of analytic solutions for ψm

given in tables 3, 4 and appendix D of [1] is considered as ψm(z) here. The travelling waves
are now constructed using the generalized Lorentz invariance (II) which gives the following
solitary waves:

ψm[σ(z − vt)] exp(i�m) (35)

as a solution of equation (23), where

σ ≡ (1 + r−1v2)−1/2 (36)

�m =
[
σv

(
r−1m +

β ′
m

2α′′
m

)
− α′

m

2α′′
m

]
z +

[
σ

(
m +

β ′
m

2β ′′
m

)
− β ′

m

2β ′′
m

]
t (37)

and where v is the common velocity of the waves.
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For β ′′
m = 0 (i.e. r−1 = 0), equations (7) and (9) are used to obtain A and B, giving

�m = 1

2α′′
m

(β ′
mv − α′

m)z +

(
m − β ′

mv2

4α′′
m

)
t. (38)

Of the 28 analytic pairs of ψm(τ),m = 1, 2, presented for N = 2 for the L-set of
two CNLS equations, 18 are in terms of Lamé functions [7] of order 1 that are simply the
Jacobian elliptic functions sn(τ), cn(τ), and dn(τ), of modulus k, where 0 < k2 � 1, and
10 are in terms of Lamé functions of order 2 that involve products of the Jacobian elliptic
functions. There are 2n + 1 Lamé functions f

(n)
j of order n that we arrange in the order of

descending magnitude of their corresponding eigenvalues, and we number them according to
j = 1, 2, 2′, . . . , (n + 1), (n + 1)′. The analytic solution for the pair of ψ1(τ ) and ψ2(τ ) given
by the pair of Lamé functions f

(n)
j and f

(n)
k is denoted by (j, k)n. The three Lamé functions

of order n = 1 and five Lamé functions of order n = 2 are

f
(1)
1 = sn(τ) f

(1)
2 = cn(τ) f

(1)
2′ = dn(τ)

and

f
(2)
1,3′ = 1

3 (1 + k2 ∓
√

1 − k2 + k4) − k2sn2(τ )

f
(2)
2 = sn(τ)cn(τ) f

(2)
2′ = sn(τ) dn(τ) f

(2)
3 = cn(τ)dn(τ).

For the interaction type characterized by (β ′′
1 , β ′′

2 ) or (α′′
1 , α′′

2 ), where β ′′
j or α′′

j is equal to +1
or −1, the 10 analytic solutions for (ψ1(τ ), ψ2(τ )) that consist of Lamé functions of order 2,
from [1], are given as follows:

(−−) : (1, 2)2, (1, 2′)2

(−+) : (1, 3)2, (1, 3′)2, (3, 3′)2

(+−) : (2, 2′)2

(++) : (2, 3)2, (2, 3′)2, (2
′, 3)2, (2

′, 3′)2.

A simple rule that can be used to explain which combinations of Lamé functions appear
as solutions of a given interaction type can be found in [6].

As examples, the generalized Lorentz transformation in two forms (I) and (II) is now used
to obtain the travelling solitary-wave solutions for equations (22) and (23) for N = 2.

Consider equation (22) for N = 2 and the interaction type characterized by (β ′′
1 , β ′′

2 ) =
(+1, +1). We assume that α′′

1 = α′′
2 > −v2. The solitary-wave solution of equation (22) given

by the combination of Lamé functions of order 2 represented by the combination (2, 3)2, is

φ1(z, t) = A1sn{ηγ (t − z/v)}cn{ηγ (t − z/v)} exp i�1

φ2(z, t) = A2cn{ηγ (t − z/v)}dn{ηγ (t − z/v)} exp i�2

where η,�1,�2 are given by equations (29) and (30), and where, from [1],

A2
1 = 6k4γ 2 A2

2 = 6k2γ 2 c1 = (4 − 5k2)γ 2 c2 = (1 − 5k2)γ 2

and where cm are given by equation (26) (with the upper sign).
For the ‘mixed’ interaction type characterized by (β ′′

1 , β ′′
2 ) = (+1,−1), we assume that

α′′
1 = −α′′

2 > −v2. The solution of equation (23) given by the combination of Lamé functions
of order 2, (2, 2′)2, is

φ1(z, t) = A1sn{ηγ (t − z/v)}cn{ηγ (t − z/v)} exp i�1

φ2(z, t) = A2sn{ηγ (t − z/v)}dn{ηγ (t − z/v)} exp i�2

where, from [1], A2
1 = 6k4k′−2γ 2, A2

2 = 6k2k′−2γ 2, c1 = (4 + k2)γ 2, c2 = (1 + 4k2)γ 2.
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Similarly for equation (23), the corresponding travelling solitary-wave solutions for the
interaction type characterized by (α′′

1 , α′′
2 ) = (+1, +1), (β ′′

1 )−1 = (β ′′
2 )−1 < −v2, or by

(+1,−1), (β ′′
1 )−1 = −(β ′′

2 )−1 < −v2, can be obtained by replacing the argument ηγ (t − z/v)

of the elliptic functions in the above solutions by σγ (z − vt), and the phase � by �, where
σ and �m are given by equations (36) and (37), and cm are given by equation (34).

For the same positive value of r ≡ α′′
m/β ′′

m, the two forms of corresponding solutions can
be shown to coincide, and thus either form can be used. On the other hand, for negative values
of r, the two forms of solutions apply to two different regions r > −v2 and r < −v2.

Following these examples, it is now straightforward to apply the entire collection of
analytic solutions for the L-set of N CNLS equations, that are expressed in terms of Lamé
functions of order n � N and are given in [1, 6], to the L-sets for N CNKG equations. The
appearance of two forms of ‘relativistic’ factors η and σ given by equations (29) and (36)
that give two different solutions for two distinct regions is a novel result that may have other
implications.

4. Summary

The following results have been presented:

(1) A generalized Lorentz transformation for a general set of nonlinear Klein–Gordon
equations. The (proper) transformation and invariance are shown to consist of two
forms that have overlapping as well as two distinct regions of applicability.

(2) The application of the entire sets of analytic solutions in terms of Lamé functions of orders
n � N presented in earlier papers for the L-set of CNLS equations to the two L-sets of N
CNKG equations.

As the L-set for N CNLS equations is known to pass the Painlevé test [8, 9], the subset
of the two L-sets for N CNKG equations characterized by α′′

m/β ′′
m = +1 could be a good

candidate for a Painlevé test.
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